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Abstract. Errors, gaps and outliers complicate and sometimes invalidate the analysis of time series. While most fields have 

developed their own strategy to clean the raw data, no generic procedure has been promoted to standardize the pre-processing. 

This lack of harmonization makes the inter-comparison of studies difficult, and leads to screening methods that are usually 

ambiguous or case-specific. This study provides a generic pre-processing procedure (called past, implemented in R) dedicated 

to any univariate time series. Past is based on data binning and decomposes the time series into a long-term trend and a cyclic 10 

component (quantified by a new metric, the Stacked Cycles Index) to finally aggregate the data. Outliers are flagged with an 

enhanced Boxplot rule called Logbox. Three different Earth Science datasets (contaminated with gaps and outliers) are 

successfully cleaned and aggregated with past. This illustrates the robustness of this procedure that can be valuable to any 

discipline. 

1 Introduction 15 

In any discipline, raw data need to be inspected and evaluated during a pre-processing procedure before performing the 

analysis. Errors are removed, values that deviate from the rest of the population are flagged (outliers, see Aguinis et al., 2013), 

in some cases gaps are filled. Because the raw data are altered, pre-processing is a delicate and time-consuming task that is 

commonly neglected due to cognitive biases deflecting our understanding of reality (‘I see what I want to see’). The fate of 

extreme values is crucial as they usually challenge scientific or economic theories (Reiss et al., 1997). 20 

Time series are particularly difficult to pre-process (Chandola et al., 2009). A value can or cannot be considered as an outlier 

just depending on its timestamp (e.g., a cold temperature in summer); large data gaps are common (e.g., instrument failure), 

abrupt changes can occur (e.g., stock market crash) and a background noise frequently covers the true signal. This complexity 

explains why there currently is no consensus on which procedure to use even in the simple univariate case. A recent review 

(Ranjan et al., 2021) covered more than 37 preprocessing methods for univariate time series, and Aguinis et al. (2013) listed 25 

14 different outlier definitions that are mutually exclusive. Despite this (overwhelming) abundance of methods, there are 
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paradoxically very few R packages that offer a pre-processing function. It is worth mentioning tsclean or tsoutliers (package 

forecast, Hyndman et al., 2020) that applies a Seasonal and Trend decomposition using Loess (STL, Cleveland et al., 1990) to 

data showing a seasonal pattern. Outliers present in in the residuals are then flagged using the Boxplot rule (Tukey, 1977). 

Another alternative is outlierMAD (package pracma, Borchers, 2021) that applies a Hampel filter (Pearson, 2002) to the time 30 

series and flag outliers based on the Mean Absolute Deviation (MAD). These functions are case-specific and will occasionally 

produce errors of type I (real extreme events are cut) or type II (real outliers are missed) depending on the noise level and data 

structure.  

This study offers a more generic pre-processing procedure (called past, implemented in R) dedicated to univariate time series 

that are particularly messy (with outliers, data gaps, missing values or irregular timesteps). In opposition to methods that apply 35 

a model to forecast future events, past makes no assumption on the structure of the signal and is only based on data binning. 

The time series is divided into a sequence of non-overlapping time intervals of equal period (called bins) that fulfil four 

purposes: 

i) Data cleaning: bins with insufficient data are discarded, and outliers are flagged in the remaining bins. If there is a 

cyclic pattern within each bin, missing values can be imputed as well. 40 

ii) Decomposition: the timeseries is decomposed into a long-term trend and a cyclic component. 

iii) Cyclicity analysis: the mean cycle of the stacked bins is calculated, and the strength of the cyclicity is quantified by 

a novel index, the Stacked Cycles Index. 

iv) Aggregation: data are averaged (or summed) within each bin. 

The inputs of the past procedure offer a large flexibility in terms of imputation level or outlier cutoff, but also in the timestamp 45 

of the bins: a day does not necessarily start at midnight or a year the 1st of January. The timeline is not limited to daily or 

monthly data but can vary from milliseconds to millenaries. The outputs keep track of the changes brought to the data: 

contaminated bins are flagged, as well as outliers and imputed data points. More importantly, extensive effort has been made 

toward making the procedure feel intuitive to an unexperienced user who should be able to understand the algorithm from a 

few examples. 50 

This paper is divided into two distinct parts. The first part improves the boxplot rule that flags outliers in univariate datasets. 

This enhanced version (called LogBox) takes the sample size into account, and its performance is compared to four other 

methods in the literature, including the MAD. The second part describes the past procedure, and then applies it to three datasets 
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that have been contaminated beforehand to show the efficiency of the algorithm. Limitations are discussed, and finally good 

practice recommendations are brought in the conclusion. 55 

2 Part I, outliers 

2.1 Context 

This first part is dedicated to the detection of outliers present in univariate datasets (without the time component). The boxplot 

(or Tukey’s) rule is a commonly used method to flag outliers below a lower boundary 𝑙 and above an upper boundary 𝑢 (Tukey, 

1977): 60 

{
𝑙 = 𝑞(0.25) − α × (𝑞(0.75) − 𝑞(0.25))

𝑢 = 𝑞(0.75) + α × (𝑞(0.75) − 𝑞(0.25))
 

With 𝑞 the sample quantile (e.g., 𝑞(0.5) is the median) and α = 1.5 a constant that corresponds to 99.3% of Gaussian data 

falling within [𝑙, 𝑢]. This method is simple and robust to the presence of a maximum of 25% of outliers in the dataset (known 

as the breakdown point). However, two issues emerge from this rule: 

(i) For a Gaussian population, α = 1.5 is inappropriate for large sample sizes (𝑛 ≥ 103), because the number of 65 

points erroneously flagged as outliers increases linearly with 𝑛 (due to the 99.3% of data captured by [𝑙, 𝑢]). 

(ii) For a non-Gaussian population, α = 1.5 is generally too restrictive. For example, ~4.8 % of data following an 

Exponential distribution would be erroneously flagged as outliers. 

Two studies have attempted to address the second issue (Kimber, 1990; Hubert & Vandervieren, 2008) by adjusting α to the 

skewness 𝑆 (third standardized moment related to the asymmetry of a distribution) while ignoring the excess kurtosis 𝜅𝑒𝑥 70 

(fourth standardized moment related to the tail weight). Other studies have corrected biases emerging at small sample sizes 

(Carling, 2000; Schwertman et al., 2004); however, none have designed a method based on the boxplot rule that can handle 

outliers present in large sample sizes. 

A more generic method (called LogBox) has been developed in this study to assign 𝛼 = 𝑘 log(𝑛) + 1 with 𝑛 the sample size 

and 𝑘 a positive number that corresponds to the nature of the distribution (e.g., 𝑘 = 0.16 for Gaussian data; 𝑘 = 0.8 for 75 

Exponential data). A default value of 𝑘 = 0.6 has been determined with an ensemble of non-Gaussian distributions (the 

Pearson family) that represent univariate datasets with moderate 𝑆 and 𝜅𝑒𝑥 (Fig. 1). A comparison with four other existing 

models is then performed to test the resistance of each method to different types of distributions and different sample sizes 

(Fig. 2). 

Finally, LogBox is implemented (with the value of 𝑘 left to the user) in the aggregation procedure described in part II to clean 80 

the residuals obtained after fitting the univariate timeseries with a robust and nonparametric method.  
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2.2 Method 

2.2.1 Definition of 𝛂− and 𝛂+ with the 3σ, 4σ and 5σ convention 

Let 𝐷𝑋 be a probability distribution of a single random variable 𝑋 associated with the population quantile function 𝑄.  Two 

strictly positive functions 𝛼− and 𝛼+ attached to 𝐷𝑋 are defined for 0.75 < 𝑝 < 1:  85 

𝛼−(𝑝) =  
𝑄(0.25) − 𝑄(1 − 𝑝)

𝑄(0.75) − 𝑄(0.25)
 

𝛼+(𝑝) =  
𝑄(𝑝) − 𝑄(0.75)

𝑄(0.75) − 𝑄(0.25)
 

The boxplot rule can now be expressed with 𝛼− and 𝛼+: 

{
𝑙 = 𝑞(0.25) − 𝛼−(𝑝𝑙𝑖𝑚) × (𝑞(0.75) − 𝑞(0.25))

𝑢 = 𝑞(0.75) + 𝛼+(𝑝𝑙𝑖𝑚) × (𝑞(0.75) − 𝑞(0.25))
 

With 𝑞 the sample quantile and 𝑝𝑙𝑖𝑚  related to the percentage of data falling within [𝑄(1 − 𝑝𝑙𝑖𝑚), 𝑄(𝑝𝑙𝑖𝑚)], independent from 90 

the nature of the distribution. 

In order to set a framework consistent with the Gaussian case, we derive three 𝑝𝑙𝑖𝑚 values (𝑝3𝜎 , 𝑝4𝜎 and 𝑝5𝜎) expressed as 𝑝𝑗𝜎  

= Φ(𝑗)  with  Φ  the cumulative distribution function of the standard Normal distribution 𝒩(0,1) and 𝑗 = {3,4,5}  implicit 

throughout the study.  These 𝑝𝑙𝑖𝑚 values are associated with the percentage of Gaussian data captured by ±𝑗𝜎 (known as the 

“sigma-Rule”), with 𝜎  the standard deviation of the Gaussian. The corresponding 𝛼𝑗𝜎
𝒩 = 𝛼+(𝑝𝑗𝜎) = 𝛼

−(𝑝𝑗𝜎)  values are 95 

computed in the Gaussian case with 𝑄 = Φ−1 (Table 1). 

Due to their structure based on a ratio of differences of quantiles (Brys et al., 2006), the functions 𝛼− and 𝛼+ are location and 

scale invariant: 𝐷𝑋 and 𝐷𝜆𝑋+𝜐 share same α− and α+ (with 𝜐 ∈ ℝ and 𝜆 > 0). Moreover, 𝛼− and 𝛼+ are swapped for 𝜆 < 0: 

the pair (α−, α+) for 𝐷𝑋 becomes (α+, α−) for 𝐷𝜆𝑋+𝜐. These properties lead to two simplifications in this study: 

1) The location and scale parameters of a distribution have no effect on α− and α+ therefore only the shape parameter 100 

will vary, affecting the skewness 𝑆 and excess kurtosis 𝜅𝑒𝑥.  

2) Only symmetrical or right-skewed distributions will be considered (𝑆 ≥ 0). If 𝐷𝑋 was left-skewed, then 𝐷−𝑋 would 

be right-skewed and (α−, α+) could simply be swapped. Because now 0 < 𝛼−(𝑝𝑗𝜎) ≤ 𝛼
+(𝑝𝑗𝜎), the value of 

𝛼−(𝑝𝑗𝜎) will be disregarded and only 𝛼+(𝑝𝑗𝜎) will be used to find an optimum 𝛼. 

 105 
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j-sigma 

rule 
𝑝𝑗𝜎 = Φ(𝑗) 

 2𝑝𝑗𝜎 − 1 

(% of data 

captured) 

𝛼+(𝑝𝑗𝜎) 

 

(Gaussian) 

M(𝛼+(𝑝𝑗𝜎))  

 

(Pearson family) 

Suggested 

Sample 

size 

“±3σ” 0.99865 99.73% 𝛼3𝜎
𝒩 = 1.7 𝛼3𝜎

𝒫 = 3.8 𝑛3𝜎 ~ 10
2 

“±4σ” 0.9999683 99.994% 𝛼4𝜎
𝒩 = 2.5 𝛼4𝜎

𝒫 = 6.7 𝑛4𝜎 ~ 10
4 

“±5σ” 0.9999997 99.99994% 𝛼5𝜎
𝒩 = 3.2 𝛼5𝜎

𝒫 = 9.4 𝑛5𝜎 ~ 10
6 

Table 1. Values of 𝛼+(𝑝𝑗𝜎) for 𝑗 = {3,4,5} associated with the Gaussian distribution (4th column, 𝛼𝑗𝜎
𝒩) and the distributions 

from the Pearson Family (5th column, median 𝛼𝑗𝜎
𝒫 ). Φ is the cumulative distribution of the Standard Normal distribution 

𝒩(0,1) and M is the median. The sample sizes 𝑛𝑗𝜎  correspond to less than 1 erroneously flagged outlier (based on the 

percentage of data captured). 110 

 

2.2.2 The Pearson family 

Univariate datasets are represented in this study with 9702 distributions from the Pearson family (Pearson, 1895; 1901 & 1916) 

composed of the Gamma (196 distributions), Inverse gamma (170), Beta (4703), Beta prime (1135), Pearson IV (3377) and 

Student (120) distributions. Their quantile functions are already implemented in R to compute 𝛼+(𝑝𝑗𝜎), and their shape 115 

parameters have been chosen to produce regularly-spaced points in the (𝜅𝑒𝑥 , 𝑆
2) space without overlap and with a mean 

distance of 0.05 between them (Fig. 1). 

The range of excess kurtosis and squared skewness for all distributions has been picked as 𝜅𝑒𝑥 ∈ [0,6] and 𝑆2 ∈ [0 ,
4

5
(𝜅𝑒𝑥 +

2)]. Platykurtic distributions (𝜅𝑒𝑥 < 0) are discarded because the Gaussian case (𝜅𝑒𝑥 = 0) is considered as a minimal limit. 

Although the Pearson inequality is valid for any distribution (𝑆2  ≤ 𝜅𝑒𝑥 + 2; Pearson, 1916), values are narrowed down 120 

to 𝑆2  ≤  
4

5
(𝜅𝑒𝑥 + 2) to exclude unrealistically skewed distributions (maximum Medcouple of 0.9, see next section). Finally, 

the choice of 𝜅𝑒𝑥
𝑚𝑎𝑥 = 6 has been picked with regard to the Exponential distribution (𝑆 =  2, 𝜅𝑒𝑥 = 6), commonly used to 

delimit the realm of heavy-tailed distributions (such as Weibull or Fréchet).  

 

2.2.3 Models 125 

The general procedure developed in this study (LogBox) is based on the boxplot rule and replaces the original constant 𝛼 =

1.5 with 𝛼 = 𝑘 log(𝑛) + 1, with 𝑛 the sample size and 𝑘 = 0.6 the default value. This relationship is established based on the 

median values 𝛼𝑗𝜎
𝒫 = {3.8, 6.7, 9.4} from the Pearson family, and the three sample sizes 𝑛𝑗𝜎 = {10

2, 104, 106} that correspond 

on average to less than 1 erroneously flagged outlier (see Table 1 & Fig. 1). LogBox is compared with four other models 
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(Kimber, 1990; Hubert & Vandervieren, 2008; Schwertman et al., 2004; Leys et al., 2013). The first two models (Kim. and 130 

Hub.) adjust the boxplot method with respect to the skewness: 

{
𝑙𝐾𝑖𝑚. = 𝑞(0.25) −  3 × (𝑞(0.50) − 𝑞(0.25))

𝑢𝐾𝑖𝑚. = 𝑞(0.75) +  3 × (𝑞(0.75) − 𝑞(0.50))
 

And  

{
𝑙𝐻𝑢𝑏. = 𝑞(0.25) −  1.5 × 𝑓(−𝑀𝐶) × (𝑞(0.75) − 𝑞(0.25))

𝑢𝐻𝑢𝑏. = 𝑞(0.75) +  1.5 × 𝑓(𝑀𝐶) × (𝑞(0.75) − 𝑞(0.25))
 

With the function f defined as 𝑓(𝑀𝐶) =  𝑒4𝑀𝐶  for 𝑀𝐶 <  0 and 𝑓(𝑀𝐶) =  𝑒3𝑀𝐶  for 𝑀𝐶 ≥  0. The Medcouple 𝑀𝐶 ∈ [−1,1] 135 

is a robust estimator of 𝑆, with a breakdown point of 25% and an algorithm complexity of 𝛰(𝑛 log 𝑛). The structure, power 

and reliability of this estimator are detailed in Brys et al., 2004. The third model (Sch.) constructs the lower and upper boundary 

around the median: 

{
 

 𝑙𝑆𝑐ℎ. = 𝑞(0.50) − 
𝑍

𝑘𝑛
× 2(𝑞(0.50) − 𝑞(0.25))

𝑢𝑆𝑐ℎ. = 𝑞(0.50) + 
𝑍

𝑘𝑛
× 2(𝑞(0.75) − 𝑞(0.50))

 

With 𝑘𝑛 a function of the sample size 𝑛 to adjust for small samples (given as a table in Schwertman et al., 2004) and 𝑍 a 140 

constant related to the percentage of data captured by [𝑙𝑆𝑐ℎ., 𝑢𝑆𝑐ℎ.]. The value of 𝑍 = 3 has been picked because it corresponds 

to the Gaussian case for the ±3𝜎 window (Table 1). 

Finally, the last model (Ley.) uses a robust approximation of the standard deviation called the Median Absolute Deviation 

(𝑀𝐴𝐷) that is defined as 𝑀𝐴𝐷 = 1.4826 × M(|𝑥 − M(𝑥)|) with M the median operator. The boundaries are expressed around 

the median value as well: 145 

{
𝑙𝐿𝑒𝑦. = 𝑞(0.50) −  3 × 𝑀𝐴𝐷

𝑢𝐿𝑒𝑦. = 𝑞(0.50) +  3 × 𝑀𝐴𝐷
 

 

2.2.4 Comparison between models 

The comparison between models is performed on a subset of the Pearson Family (600 distributions, supplementary material). 

This subset has been created to give the same weight to each type of distribution, with 100 random distributions from the Beta, 150 

Betaprime, Pearson IV, Student, Gamma and Inverse-Gamma. Otherwise, the comparison would have had a large bias toward 

the Beta and Pearson IV (~83% of the Pearson family together).  For a given model, a given distribution and a given sample 

size 𝑛, the following procedure is performed to calculate the percentage of data captured by the model (with 𝑚 = 0 initially):  

Step 1: generate random deviates (of sample size 𝑛) 

Step 2: calculate 𝑙 and 𝑢 155 

Step 3: Let 𝑚𝑤𝑖𝑡ℎ𝑖𝑛  be the number of points falling within [𝑙, 𝑢] 
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 𝑚 ← 𝑚 +𝑚𝑤𝑖𝑡ℎ𝑖𝑛  

Step 4: Repeat 𝑁 times Step 1 to Step 3, with 𝑁 =  𝑐𝑒𝑖𝑙𝑖𝑛𝑔 (
106

𝑛
) 

Finally, the percentage of data captured by the model for the given distribution and given sample size is 
𝑚

(𝑁+1)𝑛
. This percentage 

is computed for all of the distributions, and the median value of the population of 600 percentages is defined as M𝑖, associated 160 

with a sample size 𝑛𝑖 = 2
𝑖 varying from 𝑛4 = 16 to 𝑛14 = 16384 (Fig. 2). 

 

 

 

Fig 1. Location of the 9702 distributions of the Pearson family in the (𝜿𝒆𝒙, 𝑺
𝟐) space (panel a). Values of 𝜶+(𝒑𝒋𝝈) are shown 165 

for 𝒋 = 𝟑 (𝟗𝟗. 𝟕𝟑% of data captured, panel b) and 𝒋 = 𝟓 (𝟗𝟗. 𝟗𝟗𝟗𝟗𝟒%, panel c). The five numbers indicated in the legend 

are the minimum, the three quartiles and the maximum. Relationships (𝑹𝟐 = 𝟎. 𝟗𝟗) between 𝜶+(𝒑𝒋𝝈) and the sample size 𝒏𝒋𝝈 

for the Gaussian, Exponential and Pearson family (panel d, see also Table 1). 
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2.3 Results and discussion 170 

The original boxplot rule captures 99.3% of a Gaussian population using the constant α = 1.5. In Table 1, this constant is 

shown to take larger values when considering wider windows (above 99.3%) and non-Gaussian distributions (Pearson family, 

Fig.1a). In the Gaussian case, α  ranges from 𝛼3𝜎
𝒩 = 1.7 to 𝛼5𝜎

𝒩 = 3.2 . Both values are similar to the α = 1.5 and α = 3 

originally used by Tukey (1977) to describe “outside” and “far out” outliers. However, for non-Gaussian data with moderate 

skewness and excess kurtosis, these criterions are too restrictive. The median of the 𝛼+(𝑝𝑗𝜎) values from the Pearson family 175 

ranges from 𝛼3𝜎
𝒫 = 3.8 (therefore above 𝛼5𝜎

𝒩  !) to 𝛼5𝜎
𝒫 = 9.4. The three sample sizes given in Table 1 correspond on average 

to less than 1 data point erroneously flagged as an outlier, and lead to the relationship 𝛼 = 𝑘 log(𝑛) + 1 with 𝑘 = 0.16 in the 

Gaussian case, 𝑘 = 0.8 in the Exponential case and 𝑘 = 0.6 for the Pearson family (Fig. 1d). 

The difference in α values among the distributions of the Pearson family is interesting to visualize in the (𝜅𝑒𝑥 , 𝑆
2) space (Fig. 

1). A non-linear relationship is observed between α and (𝜅𝑒𝑥 , 𝑆
2), and the direction of this relationship depends on the outlier 180 

threshold. For the ±3𝜎 convention (Fig 1b), α increases with both 𝜅𝑒𝑥 and 𝑆2. For the ±5𝜎 convention (Fig 1c), α increases 

with 𝜅𝑒𝑥 but decreases with 𝑆2, which shows that a higher skewness does not necessary lead to more extreme events. While 

the Pearson family is ubiquitous in nature, one could argue that other systems exist. Different families of distributions were 

investigated (Jones, 2015), but they either did not cover the entire (𝜅𝑒𝑥 , 𝑆
2) space, or no expression of 𝜅𝑒𝑥, 𝑆2 or 𝑄 (quantile 

function) were available in a closed-form. The Generalized Lambda Distribution (GLD) system has been used in a previous 185 

study (Carling, 2000), but all distributions from this family have a bounded support and they therefore produce unrealistic 

datasets (𝛼3𝜎 = 𝛼4𝜎 = 𝛼5𝜎 = 11, see supplementary material). 

 

 

Fig. 2. Comparison between the five models performed on a subset of 600 distributions from the Pearson family (100 random 190 

distributions from the Gamma, Inverse gamma, Beta, Betaprime, Pearson IV and Student). Percentage of data captured by 

each model for a large sample size (𝒏𝟏𝟒 = 𝟐𝟏𝟒 = 𝟏𝟔𝟑𝟖𝟒, panel a). Deviation of the median value 𝑴𝒊 (associated with a 
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sample size 𝒏𝒊 = 𝟐𝒊) from 𝑴𝟏𝟒 (panel b). The boxplots show 95% of the 600 distributions (the whiskers are the 2.5% and 

97.5% quantiles). 

 195 

 

The comparison between models is described in the following. For a purely Gaussian distribution, Kim. and Hub. theoretically 

capture 99.3%  of the data (boxplot rule) while Sch. and Ley. capture 99.73%  (±3𝜎  convention). For non-Gaussian 

distributions with a large sample size, these values are found to be lower: 97.5%, 98.9%, 98.3%, and 97.6%, respectively 

(Fig. 2a). These four models therefore produce a high number of erroneously flagged outliers for any arbitrary distributions: 200 

around 150 extreme events are cut on average for 1 year of hourly data. This is not the case of LogBox that captures 99.997% 

of data, which corresponds on average to less than 1 outlier flagged in the sample size of 214. 

Models also show different sensitivity to the type of distribution encountered (error bars in Fig. 2a). The most stable model is 

LogBox (95% of the distributions fall between 99.98% and 100% of data captured), while 𝐿𝑒𝑦. is the most sensitive with a 

percentage of data captured varying from 69.3% to 99.2%. This poor performance can be explained by the use of MAD, which 205 

contains a scaling factor parametrized on the standard deviation of the Gaussian (Leys et al., 2013). Quantile-based models 

(Kim., Sch. & Hub.) are therefore more reliable for non-Gaussian distributions and show a variation of only ±2% around their 

median value. 

Finally, the sensitivity of the models to the sample size is tested (Fig. 2b). All models show a negative bias in the percentage 

of data captured compared to the large sample size. This bias is minimal with LogBox (−1.2%) but important with Hub. 210 

(−5.4% for 𝑛 = 16). This comes from the complexity of their model: the Medcouple is a remarkable estimator of the skewness 

but it requires a large sample size to reach convergence. In parallel, the protocol established by Schwertman et al. (2004) to 

correct for a small sample size effect has not shown significant improvements compared to other models (Kim. or Leys.). 

To summarize, Logbox is a simple method inspired by the Boxplot rule to flag outliers in univariate datasets. It captures a 

percentage of data that is adapted to large sample sizes and the k input offers flexibility in terms of outlier cutoff. The outlier 215 

level is drastically different between a Gaussian (k = 0.16) and Exponential distribution (k = 0.8), and this study suggests a 

default value of k = 0.6 based on distributions with moderate skewness and kurtosis (Pearson family). Logbox is implemented 

in the aggregation procedure that will be described in part II.  
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3 Part II, the past procedure 220 

3.1 Context 

This second part is dedicated to the pre-processing, partial imputation and aggregation of univariate time series. While 

aggregating data without outliers or missing values is a trivial task, it becomes more difficult when the data are contaminated. 

In order to flag outliers in a time series, one first needs to produce residuals that represent the variability around the signal. 

In its simplest form, the time series 𝑦𝑡  is represented with the following additive decomposition (Hyndman & Athanasopoulos, 225 

2018): 𝑦𝑡 = 𝑇𝑡 + 𝑆𝑡 + 𝜖𝑡 , with 𝑇𝑡  a long-term trend, 𝑆𝑡  a cyclic component (originally, seasonal component but the term 

cyclic is preferred here as it is more generic) with period 𝜏 (∀ 𝑡, 𝑆𝑡 = 𝑆𝑡+𝜏) and 𝜀𝑡 the remainders or residuals. One popular 

algorithm that performs this decomposition is the Seasonal and Trend decomposition using Loess (or STL, Cleveland et al., 

1990), that is robust to the presence of outliers. The enhanced version of the algorithm, STLplus (Hafen, 2016), is also robust 

to the presence of missing values and data gaps. Unfortunately, there are three major drawbacks to using STLplus in the general 230 

case: (i) This algorithm has specifically been designed for signals showing seasonal patterns, which makes it less relevant for 

other types of data; (ii) The long-term trend based on loess needs to be parametrized. The decomposition is therefore not unique 

and the parametrization of the loess might seem arbitrary; (iii) The algorithm has a complexity of Ο(𝑛2) due to the loess, which 

is resource intensive and not adapted to long time series (𝑛 >  107). 

A new robust and nonparametric procedure (past) is proposed instead to calculate 𝑇𝑡  and 𝑆𝑡  using non-overlapping bins. 235 

Outliers are then flagged in the residuals 𝜖𝑡 with the LogBox method described in part I, and imputation is performed using 

𝑇𝑡 + 𝑆𝑡 if the cyclic pattern is strong enough, which is quantified by a new index introduced in this study (the Stacked Cycles 

Index or SCI). Bins with sufficient data can finally be aggregated, while other bins are discarded. The procedure is simple 

(entirely described in Fig. 3), the long-term trend 𝑇𝑡 is unique and non-parametrized (based on linear interpolations crossing 

each bin), the cyclic component 𝑆𝑡 is simply the mean stack of bins using detrended data (equivalent to STL for periodic time 240 

series). The algorithm complexity is of the order of Ο(𝑛 𝑙𝑜𝑔(𝑛)) because the loess is not necessary anymore. 

In the following, the procedure is first described more in details and then applied to three case studies (a temperature, 

precipitation and methane dataset) that have been contaminated with outliers, missing values and data gaps. Comparison with 

the raw data demonstrates the reliability of the past procedure. 

 245 

3.2 Method 

3.2.1 Definitions 

Bin: a bin is a time window characterized by a left side (inclusive), a right side (exclusive), a center and a period (e.g., 1 year 

in Fig. 3a). Any univariate time series can be decomposed in a sequence of non-overlapping bins, with the first and last data 
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point contained in the first and last bin, respectively (Fig. 3a). The bin size 𝑛𝑏𝑖𝑛 is the rounded median of the number of data 250 

points (including NA values) present in each non-empty bin of the sequence. A bin is accepted when its number of non-NA 

data points is above 𝑛𝑏𝑖𝑛(1 − 𝑓𝑁𝐴) with 𝑓𝑁𝐴 ∈ [0,1] the maximum fraction of NA values per bin (input left to the user). 

Otherwise, the bin is rejected and all its data points are set to NA (Fig. 3a, bin 4). 

 

Long-term trend: the long-term trend (median based) is a linear interpolation of the median values associated with each side 255 

(calculated between two consecutive centers, see Fig. 3a). A side value is set as missing if the number of non-NA data points 

(between the two nearest consecutive centers) is below 𝑛𝑏𝑖𝑛(1 − 𝑓𝑁𝐴). To solve for boundaries issues and missing sides values, 

the interpolation is extended using the median value associated with each center (bin 1, 3 & 5 in Fig. 3a). Once the outliers 

have been quarantined, the long-term trend (mean based) will be calculated following the same method but using the mean 

instead of the median (Fig. 3c). 260 

 

Cycle: the cycle (median based) is composed of 𝑛𝑏𝑖𝑛 points that are the medians of the stack of all accepted bins with the long-

term trend (median based) removed (Fig. 3.b.1). Once the outliers have been quarantined, the cycle (mean based) will be the 

mean stack of accepted bins with the long-term trend (mean based) removed (Fig. 4a; bin 2,3 & 5). The cyclic component 𝑆𝑡 

is the sequence of consecutive cycles.  265 
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Fig. 3. Example of the aggregation procedure with the following inputs: bin side = 2020-06-01, bin period = 1 year, 𝑓𝑁𝐴 = 0.2 

(minimum of 10 months of data for a bin to be accepted), 𝑘 = 0.6 (outlier level) and 𝑆𝐶𝐼𝑚𝑖𝑛 = 0.6 (cyclic imputation level). 270 

The bin 4 has been rejected because it contains only 6 months of data (panel a). Two outliers have been flagged in the residuals 

(detrended and deseasonalized data, panel b.2). After the outliers have been replaced with NA values, the bin 1 has been 

rejected (9 months of data), and the long-term trend and cycle have been updated using the mean instead of the median (panel 

c). A point in bin 3 has been imputed based on the cyclicity (𝑆𝐶𝐼𝑚𝑖𝑛 ≤ 𝑆𝐶𝐼 = 0.61 ). 
 275 

Stacked Cycles Index:  SCI ≤ 1 is an adimensional parameter quantifying the strength of a cycle based on the variability 

around the mean stack (Fig. 4). Its structure is similar to another index developed in a former study (Wang et al., 2006), 

however a factor of 𝑁𝑏𝑖𝑛
−1  has been added to correct for a bias emerging at a small number of bins (𝑁𝑏𝑖𝑛 is the number of 

accepted bins). This correcting factor has been calculated based on stationary time series of Gaussian noise (with therefore a 

null cyclicity per definition, see supplementary material). 280 
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Fig. 4. The Stacked Cycles Index (𝑆𝐶𝐼 ≤ 1) quantifies the strength of the cyclicity associated with the period of a bin (data 

from Fig. 3c). The long-term trend (mean based) is first removed to compute the total sum of squares (panel a). Then the cyclic 

component (mean based) is also removed to compute the sum of squared residuals (panel b). SCI is the coefficient of 285 

determination minus 𝑁𝑏𝑖𝑛
−1  to correct for a bias emerging at a small number of bins, with 𝑁𝑏𝑖𝑛 the number of accepted bins (here 

𝑁𝑏𝑖𝑛 = 3, panel c). 

 

3.2.2 Past procedure 

Inputs. 290 

1. The univariate time series (1st and 2nd column: time and raw data, respectively) 

2. One bin center or one bin side (e.g., 2020-06-01) 

3. The period of the bin (e.g., 1 year) 

4. The aggregation operator (mean, median or sum) 

5. The range of possible values (default value 𝑦𝑙𝑖𝑚 ∈ ] − ∞,+∞[) 295 

6. The maximum fraction of NA values per bin (default value 𝑓𝑁𝐴 = 0.2) 

7. The 𝑘 outlier level used in LogBox (default value 𝑘 = 0.6) 

8. The minimum SCI for imputation (default value 𝑆𝐶𝐼𝑚𝑖𝑛 = 0.6) 
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Outputs. 

1. The raw dataset, with 8 columns: (i) time; (ii) outlier-free and imputed data; (iii) index of the bins associated with 300 

each data points (the index is negative if the bin is rejected); (iv) long-term trend; (v) cyclic component; (vi) 

quarantined outliers; (vii) value of the imputed data points; (viii) relative position of the data points in their bins, 

between 0 (the point falls on the left side) and 1 (the point falls on the right side) 

2. The aggregated dataset, with 10 columns: (i) aggregated time (center of the bins); (ii) aggregated data; (iii) index of 

the bin (negative value if the bin is rejected); (iv) start of the bin; (v) end of the bin; (vi) number of points per bin 305 

(including NA values); (vii) number of NA values per bin, originally; (viii) number of outliers per bin; (ix) number 

of imputed points per bin; (x) variability associated with the aggregation (standard deviation for the mean, MAD for 

the median and nothing for the sum) 

3. The mean cycle, with 3 columns: (i) time boundary of the first bin with 𝑛𝑏𝑖𝑛 points equally spaced; (ii) the mean 

value associated with each point; (iii) the standard deviation associated with the mean value 310 

4. The Stacked Cycle Index 

5. representative number of data points per bin, 𝑛𝑏𝑖𝑛 

Step 1, data screening. The bin size 𝑛𝑏𝑖𝑛 is calculated; values above or below 𝑦𝑙𝑖𝑚 are set to NA; the number of accepted bins 

𝑁𝑏𝑖𝑛 is assessed; all data points within rejected bins are set to NA; the long-term trend and cycle (both median based) are 

calculated (Fig. 3a,b.1). 315 

Step 2, outliers. Outliers are flagged in the residuals (detrended and deseasonalized data) using the LogBox procedure (Fig. 

3b.2); outliers are quarantined and their values are set to NA; the number of accepted bins 𝑁𝑏𝑖𝑛 is updated; all data points 

within newly rejected bins are set to NA (Fig. 3c, bin 1). 

Step 3, long-term trend and cycle (mean based): The long-term trend and the cycle are calculated using the mean instead of 

the median (Fig. 3c); SCI is calculated (Fig. 4). 320 

Step 4, imputation: If 𝑆𝐶𝐼 >  𝑆𝐶𝐼𝑚𝑖𝑛 , all NA values in accepted bins are imputed with the long-term trend + the mean cycle 

(imputation bounded by 𝑦𝑙𝑖𝑚). Repeat Step 3 and Step 4 three times to reach convergence. 

Step 5, aggregation: Accepted bins are aggregated around their center. 

 

3.2.3 Case studies 325 

Three univariate datasets are chosen to illustrate the potential of the aggregation procedure (Fig. 5, first column). The first 

dataset is an in-situ temperature (in °C) measured during summer in the canopy of an Oak woodland of California (month of 

August, temporal resolution of 5 min), and provided by the National Ecological Observatory Network (NEON, site SJER). 

The second dataset is an in-situ daily precipitation record (in mm) measured at the station of Cape-Leeuwin (South westerly 

coast of Australia) from 1990 to 2020 and available on the Global Historical Climatology Network (Menne et al., 2012; 330 
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Xungang et al. 2012). The last dataset is a Methane proxy record (in ppbv) published in Loulergue et al. (2008) that covers 

800000 years with irregular timesteps (varying from 1 to 3461 years, with a median of 311 years). None of the datasets contain 

obvious outliers or large data gap. 

 

3.2.4 Contamination of the datasets 335 

To test for the robustness of the aggregation procedure, the three raw datasets are contaminated by 30% (Fig 5, second column) 

with the use of three data gap (20% of the dataset), random NA values (9.5% of the dataset) and outliers (0.5% of the dataset). 

The three data gaps are picked with random length and position. The position of the outliers and the NA values follows a 

Poisson law. The value of the outliers is picked equal to 𝑦𝑚𝑖𝑛 −
1

2
(𝜇 − 𝑦𝑚𝑖𝑛) or 𝑦𝑚𝑎𝑥 +

1

2
(𝑦𝑚𝑎𝑥 − 𝜇) with 𝑦𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥  and 𝜇  

respectively the minimum, maximum and mean of the dataset. No negative outliers are set for the precipitation because these 340 

values are impossible. 

 

3.2.5 Aggregation of the datasets 

Each dataset (raw and contaminated version) is consecutively aggregated twice (Fig. 6). The temperature dataset is aggregated 

(using the mean) every hour (𝑛𝑏𝑖𝑛 = 12) and then every day (𝑛𝑏𝑖𝑛 = 24). The precipitation dataset is aggregated (using the 345 

sum) every month (𝑛𝑏𝑖𝑛 = 31) and then every year (𝑛𝑏𝑖𝑛 = 12). The methane dataset is aggregated (using the mean) every 

2000 years (𝑛𝑏𝑖𝑛 = 4) and then every 20000 years (𝑛𝑏𝑖𝑛 = 10).  For each dataset, the mean cycle of the second level of 

aggregation is shown in Fig. 5 (second column). 

The aggregation inputs are chosen as default values. The only exceptions are 𝑘 = ∞ for the raw data (outliers are not checked), 

𝑓𝑁𝐴 = 1 for the Methane dataset (bins with at least 1 non-NA data point are accepted due to the high irregularity in the sampling 350 

frequency) and 𝑦𝑙𝑖𝑚 = [0,+∞[ for the precipitation dataset (negative precipitation are impossible). The number of false 

positive (real data points flagged as outliers) and false negative (real outliers that have not been flagged) are counted during 

the first level of aggregation (Table 2). 

 

https://doi.org/10.5194/hess-2021-609
Preprint. Discussion started: 17 December 2021
c© Author(s) 2021. CC BY 4.0 License.



16 

 

 355 

Fig. 5. Raw and contaminated versions of the three datasets used as case studies: temperature (panel a), precipitation (panel 

b) and methane (panel c). The sampling frequency is given in parenthesis. The contaminated versions contain three large data 

gaps (20% of the datasets), random missing values (9.5%) and random outliers (0.5%) set as a constant level below the 

minimum value and above the maximum value. 

 360 

2.3 Results and discussion 

The three univariate time series have been chosen as case studies due to their various statistical characteristics that are 

commonly seen in the scientific or economic field (Fig. 5, 1st column). The long-term trend follows smooth or moderate 

variations in the temperature and precipitation datasets, but shows a much higher volatility in the methane dataset. The cyclic 

pattern varies from strong diurnal cycles (temperature) and moderate seasonal cycles (precipitation) to no apparent cyclicity 365 

over a 20000 years period (methane). The detrended and deseasonalized residuals follow distributions from gaussian 

(temperature) or seemingly exponential (methane) to heavy-tailed (precipitation). Finally, the sampling frequency goes from 

sub-hourly (temperature) or daily (precipitation) to highly variable (1 to 3461 years, methane). To test the limits of the 
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aggregation procedure, these three datasets are severely contaminated by data gaps, outliers and missing values (Fig. 5, 2nd 

column). 370 

 

 

 

Fig. 6. Aggregation of the temperature (panel a), precipitation (panel b) and methane (panel c) in two consecutive levels: 1 

(thin lines) and 2 (bold lines). Only the first level of aggregated precipitation is shown for clarity. Black and red colors are 375 

associated with the raw and contaminated datasets, respectively. The mean cycles of the second level of aggregation are shown 

in the second column, with their SCI displayed (the raw and contaminated versions share similar values).  
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The first level of aggregation recovers most of the destroyed signal with ~80% of the bins being accepted for all three datasets 

(Fig. 6). In these accepted bins, all outliers have been correctly flagged (Table 2, zero false negatives). The mean percentage 380 

of difference between the contaminated and raw aggregates (level 1) is virtually zero for the temperature (0 ± 0.2%, 1 standard 

deviation), small for the methane (−0.1 ± 2%) but large for the precipitation (−10 ± 25%). This comes from the significant 

number of extreme precipitations events (85 days) that have been erroneously flagged as outliers (Table 2, false positives). 

Daily precipitation events are known to follow heavy tailed distributions (Wilks & Wilby, 1999), which is why the default 

outlier level of 𝑘 = 0.6 is insufficient here. A value of 𝑘 ~ 5 is optimum in this case as it preserves the extreme events while 385 

cutting the outliers (the mean percentage of difference becomes −0.1 ± 16% ). However, for daily precipitation with 

exceptional droughts followed by floods, the adequate outlier value can reach up to 𝑘~ 50. For the Methane dataset, the 4 

false positives (Table 2) come from the difficulty for the long-term trend to properly capture abrupt changes in 𝐶𝐻4 over few 

centuries. Again, this problem can be solved by increasing 𝑘 = 0.6  to 𝑘 ~ 1  without affecting the false negatives. To 

summarize, the 𝑘 value is ultimately left to the user (based on her/his prior knowledge of the data) because there are no proper 390 

ways to estimate it systematically as the skewness and kurtosis of the residuals remain unknown (see part I).  

 

datasets 

Temperature 

(𝑛 = 8952) 

 

Precipitation 

(𝑛 = 10949) 

 

Methane 

(𝑛 = 2103) 

 

false 

positives 
1 85 4 

 false 

negatives 
0 0 0 

Table 2. Number of false positives (real data points flagged as outliers) and false negatives (outliers that have not been flagged) 

in the first level of the aggregation of the contaminated datasets shown in Fig. 6 using 𝑘 = 0.6 in the LogBox method. For the 

precipitation, 𝑘 = 5 would put both the false positives and false negatives to 0. 395 

 

The second level of aggregation has been performed to test for the cyclicity in the signal (Fig. 6, 2nd column) using the mean 

cycles and their associated Stacked Cycles Index (Fig. 4). The raw and contaminated mean cycles share similar magnitude 

within 1 standard deviation on the mean, and their SCI are the same: −0.02 for the methane (no apparent cycles of 20000 

years period), 0.69 for the precipitation (moderate seasonality) and 0.88 for the temperature (strong diurnal cycles). The SCI 400 

reveals itself being useful when comparing signals of different nature or periodicities, which is not possible for seasonal indices 

that only focuses on one field (e.g., hydrology) or data format. (e.g., monthly) such as the seasonality index of Feng et al. 

(2013). Interestingly, the past procedure manages to recover the seasonality of the precipitation dataset despite cutting most 

of the extreme events (Fig. 6, b2). This result illustrates the fact that climatic models are able to capture the mean trend while 

having difficulties to simulate exceptional events (Asadieh & Krakauer, 2015).  405 
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The cyclicity seen in the temperature and precipitation is strong enough to impute the missing data in all accepted bins, which 

further improves the reconstruction of the signal. For example, 11 months have been imputed in 9 different years for the 

precipitation dataset. Using 𝑘 = 0.6, the mean percentage of difference with the raw data went for these years from −24 ±

10%  (without imputation) to −20 ± 5% (with imputation). Because 𝑆𝐶𝐼  has a similar structure than a coefficient of 410 

determination, imputations based on high 𝑆𝐶𝐼 (> 0.6) are not detrimental to the signal, which is not the case of most linear 

interpolation. Again, the choice of performing or ignoring the imputation is left to the user with the input parameter 𝑆𝐶𝐼𝑚𝑖𝑛  

that will be compared to 𝑆𝐶𝐼 (see method).  

 

To summarize, the aggregation procedure is able to filter contaminated data by selecting bins with sufficient quality (input: 415 

𝑓𝑁𝐴) which are then cleaned from outliers (input: 𝑘). The cyclic pattern within each bin is evaluated (𝑆𝐶𝐼) and missing data 

are imputed in accepted bins if the cyclicity is strong enough (input: 𝑆𝐶𝐼𝑚𝑖𝑛). A prior knowledge of the data is essential to 

correctly chose 𝑓𝑁𝐴, 𝑘 and 𝑆𝐶𝐼𝑚𝑖𝑛 values, as these differ between datasets. 

 

3 Conclusion & recommendation (Part I & II) 420 

Although univariate timeseries are the simplest type of temporal data, this study reveals a lack of consensus in the literature 

on how to objectively isolate outliers from the signal especially in raw data of poor quality. In part I, a comparison between 

outlier detection methods for univariate datasets has shown that extreme events are too often flagged as outliers (type I error), 

especially in non-Gaussian populations with a large sample size. This led to a new method (called LogBox) that improves the 

boxplot rule by replacing 𝛼 = 1.5 with 𝛼 = 𝑘 log(𝑛) + 1, with 𝑛 the sample size and 𝑘 left to the user (default value of 0.6). 425 

In part II, a pre-processing procedure called past (implemented in R) based on data binning has been proposed to clean, 

decompose and aggregate signals without assumption on their structure. The strength of the cyclic pattern within each bin is 

assessed with a novel and adimensional index (the Stacked Cycles Index or SCI) inspired by the coefficient of determination. 

Most of the signal can be retrieved from messy univariate time series with diverse statistical characteristics. 

 430 

The past procedure has several limits that can be addressed by varying the inputs: period of the bin, maximum ratio of missing 

values per bin (𝑓𝑁𝐴), outlier level (𝑘) and cyclic imputation level (𝑆𝐶𝐼𝑚𝑖𝑛). It is recommended to pick the period of a bin so 

that it contains on average between 4 and ~50 data points. Below 4 would decrease the breakdown point to unsafe levels (1 

outlier would be enough to contaminate the bin), and above 50 would produce a long-term trend that might not properly capture 

the variability in the signal. A maximum of 20% of the bin can be missing by default (𝑓𝑁𝐴 = 0.2), but when data are sparse 435 

and irregularly distributed, a value of 𝑓𝑁𝐴 = 1 is possible (example of the Methane dataset: bins with only 1 data point were 
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accepted). An outlier level of 𝑘 = 0.6 will minimize the type I and II errors in a majority of cases, but can vary up to 𝑘 = 50  

for time series with exceptional spikes (e.g., daily rain with a 11-months drought and then a 1-month flood). Finally, the 

imputation level (default of 𝑆𝐶𝐼𝑚𝑖𝑛 = 0.6) can vary between 0 (forced imputation even without cyclic pattern) and 1 (no 

imputation). It is strongly recommended to examine the data before and after using the procedure to ensure that rejected bins 440 

and flagged outliers seem reasonable, and to be transparent about the inputs used in your future study. 
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Data availability 

The GHCN dataset is available on https://www1.ncdc.noaa.gov/pub/data/ghcn/daily/. The Methane dataset is available on 

https://doi.org/10.1038/nature06950. The temperature dataset is available on https://doi.org/10.48443/2nt3-wj42. 
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Code availability 

The past package is currently unavailable on the comprehensive R Archive Network (CRAN) because the manuscript 

"Technical note: A procedure to clean, decompose and aggregate time series" is still under review. Please contact the author 

(ritter.francois@gmail.com) if you are interested in receiving the package separately. 
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